# Synthesis and $X$-Ray Analysis of $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$ and [ $\left.\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right] \dagger$ 

Brian F. G. Johnson, Jack Lewis,* William J. H. Nelson, and Maria D. Vargas<br>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW<br>Dario Braga, Kim Henrick, and Mary McPartlin ${ }^{\bullet}$<br>School of Chemistry, The Polytechnic of North London, London N7 8DB

The cluster anion $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1) has been obtained from the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ in $\mathrm{Bu} \mathrm{OH}^{\prime}$ and $X$-ray analysis of its $\left[\mathrm{PMePh}_{3}\right]^{+}$salt shows that the anion has an unusual fused tetrahedral metal-core geometry related to that of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$. Reaction of (1) with iodine gives $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} 1\right]$ (2) in which an overall change in cluster geometry has occurred; the reaction is reversible and heating (2) with iodide regenerates (1). Reaction of (1) with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives [ $\mathrm{Os}_{8} \mathrm{H}_{2}(\mathrm{CO})_{22}$ ] which reacts with $\mathrm{P}(\mathrm{OMe})_{3}$ to give $\left[\mathrm{Os}_{8} \mathrm{H}_{2}(\mathrm{CO})_{22}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]$ and with halide ions to give eventually $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$. Crystals of $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$ are triclinic, space group $P \overline{1}$, with $a=16.775(3)$, $b=13.509(2), c=11.267(2) A, \alpha=89.88(1), \beta=103.97(1), \gamma=96.99(1)^{\circ}$, and $Z=2$. Refinement of atomic parameters using 5615 absorption-corrected data converged at $R=0.0359$. Crystals of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} I\right] \cdot \mathrm{H}_{2} \mathrm{O}$ are monoclinic, space group $P 2_{1} / c$, with $a=14.386(2), b=11.037(1)$, $c=24.629(3) A, \beta=94.30(2)^{\circ}$, and $Z=4$. Refinement of atomic parameters using 4644 absorptioncorrected reflections converged at $R=0.0569$.

The usual route to the higher clusters of osmium has been via the pyrolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right.$ ] and its derivatives in vacuo. ${ }^{1}$ However, the reaction conditions employed, and the complex mixture of products obtained, make an understanding of the mechanism of cluster growth difficult. The recently reported ${ }^{2}$ synthesis of $\left[\mathrm{Rh}_{22}(\mathrm{CO})_{37}\right]^{4-}$ from the reaction of [ $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ ] with NaOH in $\mathrm{Pr}^{1} \mathrm{OH}$ prompted us to investigate the corresponding reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$. Under similar conditions, which allow the building-up sequence to be more conveniently investigated, we have synthesized a range of cluster species with up to 10 osmium atoms including the new hydrido-monoanion $\left[\mathrm{Os} \mathrm{s}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}(1) .{ }^{3}$ This species has an unexpected metal-core geometry which cannot be explained by conventional skeletal electron-counting procedures.

The anion (1) reacts reversibly with iodine to give the neutral derivative $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ (2); this reaction is accompanied by major structural change involving not only cleavage of Os -Os bonds, but also rearrangement of the carbonyl ligands. ${ }^{4}$ This behaviour contrasts to that observed for the carbido-dianion $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]^{2-}$ which was previously shown to react reversibly with $I_{2}$ via the sequential opening up at capping $\mathrm{Os}(\mathrm{CO})_{3}$ groups without CO migration. ${ }^{5}$

## Results and Discussion

The complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ was heated in $\mathrm{Bu}^{i} \mathrm{OH}$ under reflux with $\mathrm{KOH}\left(\mathrm{Os}:[\mathrm{OH}]^{-}=5: 1\right)$ for varying lengths of time, the products separated by t.l.c. or fractional crystallization (anions as their $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salts), and characterized by spectroscopic methods (Table 1). After 1 h the trinuclear species $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]^{-}$and $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{OBu}^{i}\right)(\mathrm{CO})_{10}\right]$ were the major products of the reaction (Scheme 1) together with a
$\dagger$ Methyltriphenylphosphonium $1,1,1,2,2,2,3,3,4,4$-decacarbonyl-3,4- $\mu$-\{[ $\mu$-hydrido-bis(tricarbonylosmio) - Os $\left.\left.\left(\mathrm{Os}^{3,4}\right) O s^{\prime}\left(\mathrm{Os}^{3,4}\right)\right]\right\}$ -
1,2,3;1,2,4-di- $\mu_{3}$-tricarbonylosmio-tetrahedro-tetraosmate( $1-$ ) and $1,1,1,2,2,2,3,3,4,4,5,5,5,6,6,6,7,7$-octadecacarbonyl-3,4,7- $\mu_{3}$-hydrido-$1,4-\mu$-iodo-3,7- $\mu$-tetracarbonylosmio-cyclo-heptaosmium ( $14 \mathrm{Os}-\mathrm{Os}$ ) respectively.
Supplementary data available (No. SUP 23959, 69 pp.): Bond lengths and angles and H -atom co-ordinates for the $\left[\mathrm{PMePh}_{3}\right]^{+}$ cation, thermal parameters, structure factors. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii--xix.


Scheme 1. (i) $\mathrm{KOH}, \mathrm{Bu}^{i} \mathrm{OH},\left\{\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]:\left[\mathrm{OH}^{-}\right]=5: 1\right\}$. Reactions of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ with KOH heated under $\mathrm{N}_{2}$ reflux in $\mathrm{Bu}^{i} \mathrm{OH}$. With increasing time the relative concentrations of products became fairly constant; typical approximate distributions are shown. Separation was by t.l.c., characterisation was by i.r. and mass spectroscopy with the anions as their $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salts. Owing to decomposition on t.l.c. plates the anion $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]^{-}$was separated by fractional crystallisation as its $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salt
trace of $\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right]^{-}$. However after longer reaction times ( $12-48 \mathrm{~h}$ ) larger clusters were also isolated whose concentration became fairly constant (Scheme 1). Thus, a typical product distribution was, after $48 \mathrm{~h},\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{OBu}^{1}\right)(\mathrm{CO})_{10}\right]$ $(25 \%),\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right]^{-}(45 \%),\left[\mathrm{Os}_{6} \mathrm{H}(\mathrm{CO})_{18}\right]^{-}(5 \%),\left[\mathrm{Os}_{6}-\right.$ $\left.(\mathrm{CO})_{18}\right]\left(5 \%\right.$ ), and $\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})(\mathrm{CO})_{24}\right]^{-}$(trace). More $\left[\mathrm{Os}_{10} \mathrm{H}-\right.$ $\left.(\mathrm{C})(\mathrm{CO})_{24}\right]^{-}$was obtained on extending the reaction time but the maximum yield obtained was only $c a .10 \%$ (after 144 h ).

In order to investigate the building-up sequence the individual stability of the above products was first examined by refluxing them in turn in $\mathrm{Bu}^{\prime} \mathrm{OH}$ without base. The anions were found to be stable on heating ( 48 h ) with the exception of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]^{-}$which gave, after $4 \mathrm{~h},\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{OBu}^{1}\right)(\mathrm{CO})_{10}\right]$ $(20 \%),\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right]^{-}(70 \%),\left[\mathrm{Os}_{6} \mathrm{H}(\mathrm{CO})_{18}\right]^{-}$(trace), and
(a) Anionic clusters

(b) Neutral clusters


Scheme 2. The reactions of the individual anionic or neutral clusters under $\mathrm{N}_{2}$ reflux in Bu'OH
$\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (trace) (Scheme 2). This is in accord with earlier observations that have shown that the pyrolysis of $\left[\mathrm{Os}_{3} \mathrm{H}-\right.$ $\left.(\mathrm{CO})_{11}\right]^{-}$in a range of donor solvents [e.g. bis(2-methoxyethyl) ether, dioxane, or tetrahydrofuran] gives a similar mixture of species with up to six metal atoms. ${ }^{6}$
Heating the neutral cluster $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right.$ ] in $\mathrm{Bu}^{\prime} \mathrm{OH}$ under reflux ( 53 h ) gave not only the known species [ $\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}$ ] $(21 \%),\left[\mathrm{Os}_{6} \mathrm{H}(\mathrm{CO})_{18}\right]^{-}(10 \%)$, and $\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})(\mathrm{CO})_{24}\right]^{-}$(trace), but also the new hydrido-monoanion $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1) (Scheme 2) which was separated in $31 \%$ yield as its [ N $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+},\left[\mathrm{PMePh}_{3}\right]^{+}$, or $\left[\mathrm{NMe}_{4}\right]^{+}$salts. Reflux of $\left[\mathrm{Os}_{3}{ }^{-}\right.$ $\mathrm{H}\left(\mathrm{OBu}^{1}\right)(\mathrm{CO})_{10}$ ] in $\mathrm{Bu}^{\mathrm{i}} \mathrm{OH}(72 \mathrm{~h})$ also gave (1) in low yield $(5 \%)$ together with $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right](20 \%)$ and $\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})-\right.$ $\left.(\mathrm{CO})_{24}\right]^{-}(5 \%)$ (Scheme 2). However most of the starting material remained unreacted in this case.
$X$-Ray analysis has shown that the monoanion $\left[\mathrm{Os}_{8} \mathrm{H}\right.$ -$\left.(\mathrm{CO})_{22}\right]^{-}$(1) has the same overall structure, of virtual $C_{2 v}$ symmetry, in the $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{PMePh}_{3}\right]^{+}$salts (Figure 1). The bond lengths and angles of the anion (1) in the two salts are equal within experimental error. Full details of the analysis of the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt, which gave much better data than the [ $\left.\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salt, are reported here.* The bond lengths and angles for the anion are given in Tables 2 and 3 respectively. Bond length and angle data for the $\left[\mathrm{PMePh}_{3}\right]^{+}$cation have been deposited (SUP No. 23959). The carbonyl ligands are terminal with $\mathrm{Os}^{-} \mathrm{C}^{-} \mathrm{O}$ angles in the range $172-180^{\circ}$ (see Table 3).
The dianion $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$, from which the hydride (1) is formally derived, has the bicapped octahedral geometry ${ }^{7}$ expected for an $\mathrm{Os}_{8}$ species with seven skeletal electron pairs

[^0]$(S=7)^{8,9}$ Unexpectedly the $\mathrm{Os}_{8}$ core in the $\left[\mathrm{Os} \mathrm{s}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$ monoanion (1) has an unrelated structure consisting of fused tetrahedra (Figure 1). Three of the tetrahedra are linked by sharing faces $[\mathrm{Os}(1), \mathrm{Os}(2), \mathrm{Os}(3)$ and $\mathrm{Os}(1), \mathrm{Os}(2), \mathrm{Os}(4)]$ giving a bicapped tetrahedral unit similar to the $\mathrm{Os}_{6}$ core observed in $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right] .{ }^{9}$ The fourth tetrahedron shares an edge with the basic $\mathrm{Os}_{6}$ unit forming a remarkably short bond $\mathrm{Os}(3)-\mathrm{Os}(4)$ of length $2.600(1) \AA$ in the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt. The previous shortest $\mathrm{Os}^{-} \mathrm{Os}$ bonds reported are those of 2.601 and $2.606 \AA$ in $\left[\mathrm{Os}_{5} \mathrm{H}(\mathrm{CO})_{13}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}-o\right)\right]$, which were attributed to some multiple-bond character. ${ }^{10}$

Hydrogen ligands are known to produce unusual metal rearrangements in osmium cluster compounds; for example [ $\mathrm{Os}_{6} \mathrm{H}_{2}(\mathrm{CO})_{18}$ ] and $\left[\mathrm{Os}_{5} \mathrm{H}_{2}(\mathrm{CO})_{16}\right.$ ] have been shown to have capped square-pyramidal ${ }^{11}$ and edge-bridged tetrahedral ${ }^{12}$ metal arrangements whereas the expected geometries were octahedral and square pyramidal respectively. Up until the structure of the monoanion (1) was initially reported ${ }^{3}$ it had been possible to rationalize all cluster structures of this type by extended skeletal electron-counting procedures. ${ }^{1.13}$ The monoanion (1) was the first example of a high nuclearity osmium cluster whose metal geometry could not readily be explained by these procedures, although overall the cluster obeys the effective atomic number (e.a.n.) rule. Recently Mingos ${ }^{14}$ has extended skeletal accounting procedures to include clusters with condensed polyhedral metal frames. Basically he states that, for clusters of this type, the same total number of skeletal electrons would be required as the constituent polyhedra minus the electron count characteristic of any edge or face shared by two polyhedra. Therefore the total electron count expected for (1) would be that due to four tetrahedra ( $4 \times 60 \mathrm{e}$ ), minus those equivalent to the two shared faces ( $-2 \times 48 \mathrm{e}$ ), and minus those for the shared edge ( -34 e ). This gives a required total of 110 e for this type of $\mathrm{Os}_{8}$ geom-

Table 1. I.r. ${ }^{\text {a }}$ and mass spectra of the clusters synthesised

| Cluster | $v(\mathrm{CO}) / \mathrm{cm}^{-1}$ | $m / z^{\text {b }}$ |
| :---: | :---: | :---: |
| $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]^{-}$ | $\begin{aligned} & 2080 \mathrm{w}, 2017 \mathrm{~s}, 1988 \mathrm{~s}, \\ & 1945 \mathrm{~m} \end{aligned}$ | -. |
| $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{OBu}^{\prime}\right)(\mathrm{CO})_{10}\right]$ | $\begin{aligned} & 2109 \mathrm{w}, 2067 \mathrm{~s}, 2058 \mathrm{~m}, \\ & 2020 \mathrm{~s}, 1997 \mathrm{~m}, 1981 \mathrm{w} \end{aligned}$ | 930 |
| $\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right]^{-}$ | $\begin{aligned} & 2046 \mathrm{~s}, 2039(\mathrm{sh}), 2020 \mathrm{~s}, \\ & 199 \mathrm{~s}, 1975 \mathrm{~m} \end{aligned}$ | $\cdots$ |
| $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right]$ | $\begin{aligned} & 2083 \mathrm{~s}, 2065 \mathrm{vs}, 2017 \mathrm{~s} \text {, } \\ & 1994 \mathrm{w} \end{aligned}$ | 1108 |
| $\left[\mathrm{Os}_{6} \mathrm{H}(\mathrm{CO})_{18}\right]$ | $\begin{aligned} & 2032 \mathrm{~s} \text { br, } 2020 \mathrm{~s}, 2005 \mathrm{w} \text {, } \\ & 1956 \mathrm{w} \end{aligned}$ | -- |
| [ $\mathrm{Os}_{6}(\mathrm{CO})_{18}$ ] | 2 104w, $2075 \mathrm{~s}, 2061 \mathrm{~s}$, $2037 \mathrm{~s}, 2029$ (sh), 1 999w | 1656 |
| $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$ | $2070 \mathrm{w}, 2036 \mathrm{~s}, 2014 \mathrm{vs}$, $2006 \mathrm{vs}, 1980 \mathrm{~s}, 1968 \mathrm{~m}(\mathrm{sh})$, <br> 1943 w, 1720 w br | -- |
| (1) $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$ | $\begin{aligned} & 2091 \mathrm{w}, 2065 \mathrm{~s}, 2058 \mathrm{~s}, \\ & 2044 \mathrm{~s}, 2014 \mathrm{~m}, 1996 \mathrm{mw}, \\ & 1978 \mathrm{w}, 1967 \mathrm{w} \end{aligned}$ | - |
| (3) $\left[\mathrm{Os}_{8} \mathrm{H}_{2}(\mathrm{CO})_{22}\right]$ | $\begin{aligned} & 2086(\mathrm{sh}), 2082 \mathrm{~s}, 2066 \mathrm{~s}, \\ & 2039 \mathrm{br} \end{aligned}$ | 2154 |
| (2) $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ | $\begin{aligned} & 2117 \mathrm{w}, 2093 \mathrm{~m}, 2077 \mathrm{~s}, \\ & 2054 \mathrm{vs}, 2042 \mathrm{~m}(\mathrm{sh}), 2020 \mathrm{~m} \end{aligned}$ | 2280 |
| (4) $\left[\mathrm{Os}_{8} \mathrm{H}_{2}(\mathrm{CO})_{22}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]$ | $\begin{aligned} & 2099 \mathrm{w}, 2087 \mathrm{w}, 2072 \mathrm{~s} \text {, } \\ & 2067 \mathrm{~m}, 2051 \mathrm{vs}, 2038 \mathrm{~m}, \\ & 2030 \mathrm{w}(\mathrm{sh}), 2013 \mathrm{w}, 2002 \mathrm{w} \text {, } \\ & 1993 \mathrm{w} \end{aligned}$ | 2278 |
| $\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})(\mathrm{CO})_{24}\right]^{-}$ | $\begin{aligned} & 2062(\mathrm{sh}), 2057 \mathrm{~s}, 2019 \mathrm{~m}, \\ & 2009 \mathrm{~s}, 2002 \mathrm{~m}(\mathrm{sh}) \end{aligned}$ | - |



Figure 1. The structure of the monohydride anion $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$ (1) in the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt. The carbonyl carbon atoms have the same numbers as the oxygen atoms to which they are attached
etry which is the number observed in the monoanion [ $\mathrm{Os}_{8} \mathrm{H}$ -$\left.(\mathrm{CO})_{22}\right]^{-}$(1). An alternative approach, which reflects the possible sequence of cluster growth, is to regard the monoanion as a diosmium derivative of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (see later).
Although the hydrogen ligand was not located directly in the $X$-ray analyses of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$, its site was readily deduced from the characteristic displacement of the close-

Table 2. Bond lengths $(\AA)$ for the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$ (1)

| $\mathrm{Os}(1)-\mathrm{Os}(2)$ | 2.740(1) | $\mathrm{Os}(1)-\mathrm{Os}(3)$ | 2.842(1) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Os}(1)-\mathrm{Os}(4)$ | 2.829(1) | $\mathrm{Os}(1)-\mathrm{Os}(5)$ | $2.866(1)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(6)$ | 2.854(1) | Os(1)-C(11) | 1.897(18) |
| Os(1)-C(12) | $1.913(17)$ | Os(1)-C(13) | 1.920 (16) |
| $\mathrm{Os}(2)-\mathrm{Os}(3)$ | 2.837(1) | $\mathrm{Os}(2)-\mathrm{Os}(4)$ | 2.839(1) |
| $\mathrm{Os}(2)-\mathrm{Os}(5)$ | 2.861(1) | $\mathrm{Os}(2)-\mathrm{Os}(6)$ | 2.868(1) |
| Os(2)-C(21) | 1.900(17) | $\mathrm{Os}(2)-\mathrm{C}(22)$ | $1.874(22)$ |
| Os(2)-C(23) | 1.870(21) | $\mathrm{Os}(3)-\mathrm{Os}(4)$ | 2.600 (1) |
| Os(3)-Os(5) | 2.723(1) | $\mathrm{Os}(3)-\mathrm{Os}(7)$ | 2.783(1) |
| $\mathrm{Os}(3)-\mathrm{Os}(8)$ | 2.805(1) | $\mathrm{Os}(3)-\mathrm{C}(31)$ | 1.896(15) |
| $\mathrm{Os}(3)-\mathrm{C}(32)$ | 1.867(15) | $\mathrm{Os}(4)-\mathrm{Os}(6)$ | 2.710 (1) |
| Os(4)-Os(7) | 2.803(1) | $\mathrm{Os}(4)-\mathrm{Os}(8)$ | 2.794(1) |
| Os(4)-C(41) | 1.871(20) | $\mathrm{Os}(4)-\mathrm{C}(42)$ | $1.863(18)$ |
| $\mathrm{Os}(5)-\mathrm{C}(51)$ | 1.824(18) | Os(5)-C(52) | 1.848(23) |
| Os(5)-C(53) | 1.838(17) | Os(6)-C(61) | 1.880(21) |
| Os(6)-C(62) | 1.941(17) | Os(6)-C(63) | 1.879(23) |
| $\mathrm{Os}(7)-\mathrm{Os}(8)$ | 2.848(1) | $\mathrm{Os}(7)-\mathrm{C}(71)$ | 1.913 (18) |
| $\mathrm{Os}(7)-\mathrm{C}(72)$ | 1.911(14) | $\mathrm{Os}(7)-\mathrm{C}(73)$ | 1.864(21) |
| Os(8)-C(81) | 1.863(20) | $\mathrm{Os}(8)-\mathrm{C}(82)$ | 1.893(19) |
| $\mathrm{Os}(8)-\mathrm{C}(83)$ | 1.861(18) | $\mathrm{C}-\mathrm{O}$ range 1 | -1.21(2) |



Figure 2. The anion $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1) viewed down the virtual $C_{2}$ axis to show the displacement of the CO ligands caused by the H ligand bridging $\mathrm{Os}(7)-\mathrm{Os}(8)$
packed carbonyl ligands produced by the steric requirements of the 'invisible' H atom. The CO ligands are apparently 'pushed back' from the $\mathrm{Os}(7)-\mathrm{Os}(8)$ bond (mean cis $\mathrm{C}^{-} \mathrm{Os}-\mathrm{Os}$ angle $106.9^{\circ}$, Table 3) as can be seen in the view of (1) onto this bond shown in Figure 2.
The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the $\left[\mathrm{PMePh}_{3}\right]^{+}$and $\left[\mathrm{NMe}_{4}\right]^{+}$salts of (1) exhibit only a single resonance at $\tau 20.8$; further the satellite peaks due to ${ }^{187} \mathrm{Os}^{-1} \mathrm{H}$ coupling [doublet, ${ }^{1} J\left({ }^{187} \mathrm{Os}^{-}\right.$ $\left.{ }^{1} \mathrm{H}\right)=34 \mathrm{~Hz}$ are fully consistent with the solid-state structure. ${ }^{15}$

We previously reported that variable-temperature ${ }^{1} \mathrm{H}$ n.m.r. spectra of the $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salt of (1) revealed signals at $\tau 20.79,26.47$, and 30.42 whose relative intensities were consistent with a number of monohydrido isomers being present in solution. Although we cannot rule out the possibility that isomers exist in solution for the $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salt of (1), we believe that the extra signals in the ${ }^{1} \mathrm{H}$ n.m.r. spec-

## Table 3. Bond angles ( ${ }^{\circ}$ ) for the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt of $\left[\mathrm{Os} \mathrm{s}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1)

| $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 61.1(1) | $\mathrm{Os}(4)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 61.3(1) | $\mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 57.8(1) | $\mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 63.0(1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Os}(4)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 54.6(1) | $\mathrm{Os}(5)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 61.3(1) | $\mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 62.7(1) | $\mathrm{Os}(6)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 62.0(1) |
| $\mathrm{Os}(5)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 57.0(1) | $\mathrm{Os}(5)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 104.7(1) | $\mathrm{Os}(6)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 62.2(1) | $\mathrm{Os}(6)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 116.3(1) |
| $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 61.6(1) | $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 104.7(1) | $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 94.3(1) | $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 124.5(1) |
| $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 56.9(1) | $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 121.2(1) | $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 61.9(1) | $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 148.5(1) |
| $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 95.9(5) | $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | $142.7(5)$ | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 125.5(1) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 95.1(1) |
| $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 142.1(5) | $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 86.7(5) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 62.5(1) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 149.1(1) |
| $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(6)$ | 86.0(5) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 134.4(5) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(7)$ | 61.2(1) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 147.5(6) |
| $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 123.6(5) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 84.8(5) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 99.9(7) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 131.5(6) |
| $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 164.0(5) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(6)$ | 74.7(5) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 87.2(6) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(7)$ | 118.2(6) |
| $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(11)$ | 93.6(7) | $\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 136.3(4) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(8)$ | 75.8(5) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 100.0(5) |
| $\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 86.3(4) | $\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 123.6(5) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 148.6(5) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 130.7(5) |
| $\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 77.0(5) | $\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{Os}(6)$ | 161.7(5) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 88.4(5) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(7)$ | 75.0(5) |
| $\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{C}(11)$ | 94.0(7) | $\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{C}(12)$ | 87.0(7) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(8)$ | 116.3(5) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{C}(41)$ | 88.6(8) |
| $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 61.2(1) | $\mathrm{Os}(4)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 60.9(1) | $\mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 57.2(1) | $\mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 61.1(1) |
| $\mathrm{Os}(4)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 54.5(1) | $\mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 61.5(1) | $\mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | 61.0(1) | $\mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 103.6(6) |
| $\mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 57.1(1) | $\mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{Os}(4)$ | 104.6(1) | $\mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | 160.0(6) | $\mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{Os}(3)$ | 106.3(6) |
| $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 61.1(1) | $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 104.4(1) | $\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 103.6(6) | $\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | 100.5(6) |
| $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(4)$ | 56.7(1) | $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(5)$ | 120.9(1) | $\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{Os}(3)$ | 160.0(6) | $\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{C}(51)$ | 89.1(9) |
| $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 133.1(5) | $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 85.9(5) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 161.6(6) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | 109.5(6) |
| $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(4)$ | 126.5(6) | $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(5)$ | 72.9(5) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{Os}(3)$ | 102.1(6) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{C}(51)$ | 87.6(8) |
| $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(6)$ | 165.7(5) | $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 94.3(6) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{C}(52)$ | 91.0(9) | $\mathrm{Os}(2)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 57.2(1) |
| $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 142.8(6) | $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(4)$ | 139.6(6) | $\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 61.1(1) | $\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | 61.1(1) |
| $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(5)$ | 87.3(6) | $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(6)$ | 83.9(6) | $\mathrm{C}(61)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 108.6(6) | $\mathrm{C}(61)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | 161.7(6) |
| $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(21)$ | 93.9(8) | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 137.0(6) | $\mathrm{C}(61)-\mathrm{Os}(6)-\mathrm{Os}(4)$ | 102.8(6) | $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 98.6(5) |
| $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | $119.7(7)$ | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(4)$ | 84.5(7) | $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | 99.3(5) | $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{Os}(4)$ | 156.8(5) |
| $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(5)$ | 159.9(6) | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(6)$ | 79.1(6) | $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{C}(61)$ | 94.0(8) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 159.8(6) |
| $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(21)$ | 87.2(8) | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(22)$ | 97.4(9) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | 103.9(7) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{Os}(4)$ | 105.1(7) |
| $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 57.7(1) | $\mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 62.5(1) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{C}(61)$ | 88.1(9) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{C}(62)$ | 91.2(9) |
| $\mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 62.8(1) | $\mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 62.0(1) | $\mathrm{Os}(4)-\mathrm{Os}(7)-\mathrm{Os}(3)$ | 55.5(1) | $\mathrm{Os}(8)-\mathrm{Os}(7)-\mathrm{Os}(3)$ | 59.7(1) |
| $\mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 61.9(1) | $\mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 115.8(1) | $\mathrm{Os}(8)-\mathrm{Os}(7)-\mathrm{Os}(4)$ | 59.3(1) | $\mathrm{C}(71)-\mathrm{Os}(7)-\mathrm{Os}(3)$ | 100.3(6) |
| $\mathrm{Os}(7)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 94.5(1) | $\mathrm{Os}(7)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 125.4(1) | $\mathrm{C}(71)-\mathrm{Os}(7)-\mathrm{Os}(4)$ | 153.5(6) | $\mathrm{C}(71)-\mathrm{Os}(7)-\mathrm{Os}(8)$ | 100.8(5) |
| $\mathrm{Os}(7)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 62.7(1) | $\mathrm{Os}(7)-\mathrm{Os}(3)-\mathrm{Os}(5)$ | 148.2(1) | $\mathrm{C}(72)-\mathrm{Os}(7)-\mathrm{Os}(3)$ | 93.3(5) | $\mathrm{C}(72)-\mathrm{Os}(7)-\mathrm{Os}(4)$ | 98.5(5) |
| $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 124.6(1) | $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 94.9(1) | $\mathrm{C}(72)-\mathrm{Os}(7)-\mathrm{Os}(8)$ | 151.3(5) | $\mathrm{C}(72)-\mathrm{Os}(7)-\mathrm{C}(71)$ | 93.2(7) |
| $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 62.1(1) | $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(5)$ | 149.2(1) | $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{Os}(3)$ | 165.6(6) | $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{Os}(4)$ | 110.3(6) |
| $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(7)$ | 61.3(1) | $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 98.0(4) | $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{Os}(8)$ | 112.8(5) | $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{C}(71)$ | 93.2(8) |
| $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 144.8(5) | $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 132.2(5) | $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{C}(72)$ | 91.1(7) | $\mathrm{Os}(4)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 55.3(1) |
| $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(5)$ | 84.8(5) | $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(7)$ | 77.4(5) | $\mathrm{Os}(7)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 59.0(1) | $\mathrm{Os}(7)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 59.6(1) |
| $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(8)$ | 120.4(5) | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 146.9(6) | $\mathrm{C}(81)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 161.5(5) | $\mathrm{C}(81)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 106.3(5) |
| $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 97.5(5) | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 129.3(5) | $\mathrm{C}(81)-\mathrm{Os}(8)-\mathrm{Os}(7)$ | 112.3(6) | $\mathrm{C}(82)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 94.5(6) |
| $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(5)$ | 87.7(6) | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(7)$ | 118.6(6) | $\mathrm{C}(82)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 98.4(5) | $\mathrm{C}(82)-\mathrm{Os}(8)-\mathrm{Os}(7)$ | 151.7(6) |
| $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(8)$ | 74.9(6) | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(31)$ | 91.8(6) | $\mathrm{C}(82)-\mathrm{Os}(8)-\mathrm{C}(81)$ | 89.9(8) | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 102.7(6) |
| Os $-\mathrm{C}-\mathrm{O}$ range 172(9)-180(9) |  |  |  | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 155.7(6) | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{Os}(7)$ | 101.8(6) |
|  |  |  |  | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{C}(81)$ | 95.0(8) | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{C}(82)$ | 93.1(8) |

trum are due to several so far unidentified species present in solution.

Careful acidification of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1) with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeCN , or with $\mathrm{HCl}(\mathrm{g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, gives the known dihydride $\left[\mathrm{Os}_{8} \mathrm{H}_{2}(\mathrm{CO})_{22}\right](3){ }^{16}$ which was characterized by i.r. and mass spectroscopy (Table 1). The reaction of this neutral derivative with $\mathrm{P}(\mathrm{OMe})_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives a single product which appears to be the adduct $\left[\mathrm{Os}_{8} \mathrm{H}_{2}(\mathrm{CO})_{22}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]$ (4) from i.r. and mass spectral data (Table 1).

Addition of $\mathrm{X}^{-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$ or proton sponge [1,8-bis(dimethylamino)naphthalene] to solutions of (3), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, deprotonates the cluster to give first $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1) (hours), then $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$ (days); this behaviour is common for large hydrido-osmium clusters. For example addition of $\mathrm{X}^{-}$to suspensions of $\left[\mathrm{Os}_{10} \mathrm{H}_{2}(\mathrm{C})(\mathrm{CO})_{24}\right]$ or $\left[\mathrm{Os}_{7} \mathrm{H}_{2}(\mathrm{CO})_{20}\right.$ ] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ultimately yields the dianions $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]^{2-}$ and $\left[\mathrm{Os}_{7}(\mathrm{CO})_{20}\right]^{2-} .{ }^{17}$ The dianion $\left[\mathrm{Os}_{8}-\right.$ $\left.(\mathrm{CO})_{22}\right]^{2-}$ is, however, more conveniently prepared by addition of a methanolic solution of KOH to a solution of (1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It should be noted that the deprotonation of (1) to give $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$ involves a rearrangement of the metal core (see later) from fused tetrahedral to bicapped octahedral.

It is interesting that the products derived from heating [ $\mathrm{Os}_{6^{-}}$ $\left.(\mathrm{CO})_{18}\right]$ in $\mathrm{Bu}^{\prime} \mathrm{OH}$ contain an even number of osmium atoms. Significantly neither $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right]$ nor $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$gave rise to other species under the same conditions. This suggests that an unsaturated $\mathrm{Os}_{2}$ fragment, generated from the breakdown of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$, may be involved as the building block in this reaction (Scheme 3). It is interesting in this connection that dinuclear osmium carbonyl clusters containing multiple $\mathrm{Os}-\mathrm{Os}$ bonds have recently been prepared. ${ }^{18}$ However we have not ruled out the possibility that di- or mono-nuclear cations are involved in cluster growth, as has been found for other metal cluster systems. ${ }^{19}$ It seems reasonable to conclude that the metal geometry in (1) is a function of the building sequence and in this connection it is interesting to note the work of Hayward and Shapley ${ }^{20}$ who have shown that high anionic clusters of osmium based only on octahedrally derived close-packed metal geometries are produced from the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ with sodium in ether solvents at various higher temperatures. At present is is not clear at which stage in the reaction sequence the carbido-atom in $\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})\right.$ (CO) $\left.)_{24}\right]^{-}$is generated, but we have established that the solvent, loss of CO from $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$, and temperature are


Scheme 3. Possible building-up sequences in the reaction of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ with $\mathrm{Bu} \mathbf{O H}^{\prime}$


Figure 3. The structure of the neutral iodide $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{21}\right]$ (2). The carbonyl carbon atoms have the same numbers as the oxygen atoms to which they are attached
crucial factors which influence the course of the reaction. Thus, although no cluster build up is observed on heating [ $\mathrm{Os}_{6}$ $\left.(\mathrm{CO})_{18}\right]$ in octane (b.p. $126^{\circ} \mathrm{C}$ ), or in $\mathrm{Bu}^{\prime} \mathrm{OH}$ (b.p. $108^{\circ} \mathrm{C}$ ) with CO passing through the solution, preliminary results indicate that heating $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right.$ ] in n-hexanol (b.p. $157{ }^{\circ} \mathrm{C}$ ) under reflux gives $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right.$ ] and the carbido-cluster $\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})(\mathrm{CO})_{24}\right]^{-}$as the only products.

Table 4. Bond lengths $(\AA)$ for $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$ (2)

| Os(1)-Os(2) | $2.764(2)$ | $\mathrm{Os}(1)-\mathrm{Os}(3)$ | $2.803(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Os}(1)-\mathrm{Os}(4)$ | $2.868(2)$ | $\mathrm{Os}(1)-\mathrm{Os}(5)$ | $2.795(2)$ |
| $\mathrm{Os}(1)-\mathrm{Os}(6)$ | $2.814(2)$ | $\mathrm{Os}(1)-\mathrm{I}$ | $2.753(2)$ |
| $\mathrm{Os}(1)-\mathrm{C}(11)$ | $1.94(3)$ | $\mathrm{Os}(1)-\mathrm{C}(12)$ | $1.92(4)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(3)$ | $2.894(1)$ | $\mathrm{Os}(2)-\mathrm{Os}(4)$ | $2.868(2)$ |
| $\mathrm{Os}(2)-\mathrm{Os}(5)$ | $2.890(2)$ | $\mathrm{Os}(2)-\mathrm{Os}(6)$ | $2.800(2)$ |
| $\mathrm{Os}(2)-\mathrm{C}(21)$ | $1.88(3)$ | $\mathrm{Os}(2)-\mathrm{C}(22)$ | $1.88(3)$ |
| $\mathrm{Os}(2)-\mathrm{C}(23)$ | $1.87(3)$ | $\mathrm{Os}(3)-\mathrm{O}(4)$ | $2.699(2)$ |
| $\mathrm{Os}(3)-\mathrm{Os}(5)$ | $2.695(2)$ | $\mathrm{Os}(3)-\mathrm{Os}(8)$ | $2.742(2)$ |
| $\mathrm{Os}(3)-\mathrm{C}(31)$ | $1.86(3)$ | $\mathrm{Os}(3)-\mathrm{C}(32)$ | $1.93(3)$ |
| $\mathrm{Os}(4)-\mathrm{Os}(6)$ | $2.782(2)$ | $\mathrm{Os}(4)-\mathrm{Os}(7)$ | $2.882(2)$ |
| $\mathrm{Os}(4)-\mathrm{Os}(8)$ | $2.904(2)$ | $\mathrm{Os}(4)-\mathrm{C}(41)$ | $1.88(3)$ |
| $\mathrm{Os}(4)-\mathrm{C}(42)$ | $1.80(3)$ | $\mathrm{Os}(5)-\mathrm{C}(51)$ | $1.92(5)$ |
| $\mathrm{Os}(5)-\mathrm{C}(52)$ | $1.87(3)$ | $\mathrm{Os}(5)-\mathrm{C}(53)$ | $1.94(4)$ |
| $\mathrm{Os}(6)-\mathrm{Os}(7)$ | $2.870(2)$ | $\mathrm{Os}(6)-\mathrm{C}(61)$ | $1.89(3)$ |
| $\mathrm{Os}(6)-\mathrm{C}(62)$ | $1.88(4)$ | $\mathrm{Os}(6)-\mathrm{C}(63)$ | $1.92(4)$ |
| $\mathrm{Os}(7)-\mathrm{I}(1)$ | $2.736(2)$ | $\mathrm{Os}(7)-\mathrm{C}(71)$ | $1.82(3)$ |
| $\mathrm{Os}(7)-\mathrm{C}(72)$ | $1.74(4)$ | $\mathrm{Os}(7)-\mathrm{C}(73)$ | $1.89(4)$ |
| $\mathrm{Os}(8)-\mathrm{C}(81)$ | $1.91(4)$ | $\mathrm{Os}(8)-\mathrm{C}(82)$ | $1.88(4)$ |
| $\mathrm{Os}(8)-\mathrm{C}(83)$ | $1.90(3)$ | $\mathrm{Os}(8)-\mathrm{C}(84)$ | $1.97(3)$ |
|  | $\mathrm{C}-\mathrm{O}$ range $1.09(5)-1.27(5)$ |  |  |
|  |  |  |  |

As part of our study of the reactions of high osmium clusters with halogens, we examined the reaction of the anion $\left[\mathrm{O} \mathrm{s}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1) with iodine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A single neutral product was formed by addition of $\mathrm{I}_{2}$ which was shown to be $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ (2) on the basis of its ${ }^{1} \mathrm{H}$ n.m.r. (singlet at $\delta-8.84$ p.p.m.) and i.r. spectra (Table 1), and an $X$-ray single-crystal analysis.

The structure of the neutral molecule [ $\left.\mathrm{O} \mathrm{s}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ (2), which crystallizes with one molecule of water, is shown in Figure 3, and the bond lengths and angles are given in Tables

Table 5. Bond angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ (2)

| $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 62.6(1) | $\mathrm{Os}(4)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 61.2(1) | $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 60.9(1) | (1) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Os}(4)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 56.8(1) | $\mathrm{Os}(5)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 62.6(1) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 94.8 (1) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 58.5(1) |
| $\mathrm{Os}(5)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 57.6(1) | $\mathrm{Os}(5)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 106.8(1) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 151.5(1) | $\mathrm{Os}(8)-\mathrm{Os}(4)-\mathrm{Os}(7)$ | 146.0(1) |
| $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 60.3(1) | $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 107.7(1) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 145.5(9) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 95.1(9) |
| $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 58.6(1) | $\mathrm{Os}(6)-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 120.0(1) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 129(1) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 89.1(9) |
| $\mathrm{I}-\mathrm{Os}(1)-\mathrm{Os}(2)$ $\mathrm{l}-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 141.4 (1) | $\mathrm{I}-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 119.7(1) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(7)$ | 94(1) | $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{Os}(8)$ | 81.0(9) |
| $\mathrm{I}-\mathrm{Os}(1)-\mathrm{Os}(4)$ $\mathrm{I}-\mathrm{Os}(1)-\mathrm{Os}(6)$ | $87.2(1)$ | ${ }^{1}-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 154.8(1) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 120(1) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 169(1) |
| $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | $85.1(1)$ $86(1)$ | $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(2)$ $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | $136(1)$ $127(1)$ | $\xrightarrow[\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(3)]{\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(7)}$ | 106(1) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(6)$ | 130(1) |
| $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 75(1) | $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(6)$ | 164(1) | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(7)$ $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{C}(41)$ | $70(1)$ $91(1)$ | $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{Os}(8)$ $\mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | $\begin{aligned} & 77(1) \\ & 58.2(1) \end{aligned}$ |
| $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{I}$ | 80(1) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(2)$ | 93(1) | $\mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 91.4(1) | $\mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{Os}(1)$ $\mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | 58.2(1) $62.3(1)$ |
| $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 144(1) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(4)$ | 135(1) | $\mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 159(1) | $\mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | 101(1) |
| $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(5)$ | 89(1) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(6)$ | $77(1)$ | $\mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{Os}(3)$ | $110(1)$ | C(52)-Os(5)-Os(1) | 111(1) |
| $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{I}$ | 96(1) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(11)$ | 98(1) | $\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | 158(1) | $\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{Os}(3)$ | 17(1) |
| $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(1)$ $\mathrm{Os}(4)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 59.3(1) | Os(4)-Os(2)-Os(1) | 61.2(1) | $\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{C}(51)$ | 88(2) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{Os}(1)$ | 99(1) |
| $\mathrm{Os}(4)-\mathrm{Os}(2)-\mathrm{Os}(3)$ $\mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 55.8(1) | $\mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | $59.2(1)$ | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{Os}(2)$ | $101(1)$ | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{Os}(3)$ | 159(1) |
| $\mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{Os}(3)$ $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 55.6(1) | Os(5)-Os(2)-Os(4) | 104.2(1) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{C}(51)$ | 86(2) | $\mathrm{C}(53)-\mathrm{Os}(5)-\mathrm{C}(52)$ | 99(2) |
| $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(1)$ $\mathrm{Os}(6)-\mathrm{Os} 2)-\mathrm{cs} 4)$ | 60.8(1) | Oss 6 - $\mathrm{Os}(2)-\mathrm{Os}(3)$ | 105.5(1) | $\mathrm{Os}(2)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 59.0 (1) | $\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 61.6(1) |
| $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(4)$ $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 58.8(1) | $\mathrm{Os}(6)-\mathrm{Os}(2)-\mathrm{Os}(5)$ | 117.2(1) | $\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | $61.8(1)$ | $\mathrm{Os}(7)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 84.9(1) |
| $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(1)$ <br> C(21)-Os(2)-Os(4) | $129.0(9)$ $113(1)$ | $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 75.7(9) | $\mathrm{Os}(7)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | 122.1(1) | $\mathrm{Os}(7)-\mathrm{Os}(6)-\mathrm{Os}(4)$ | 61.3(1) |
| $\begin{aligned} & \mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(4) \\ & \mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(6) \end{aligned}$ | $113(1)$ $164(1)$ | $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(5)$ $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | $76.5(9)$ $102(1)$ | $\mathrm{C}(61)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 103.4(9) | $\mathrm{C}(61)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | 80(1) |
| $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | $164(1)$ $132(1)$ | $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(1)$ $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(4)$ | $102(1)$ $157(1)$ | $\mathrm{C}(61)-\mathrm{Os}(6)-\mathrm{Os}(4)$ $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 141(1) | $\mathrm{C}(61)-\mathrm{Os}(6)-\mathrm{Os}(7)$ | 157(1) |
| $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(5)$ | $77(1)$ | $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(6)$ | 100(1) | $\xrightarrow{\text { C } 62)-\mathrm{Os}(6)-\mathrm{Os}(4)}$ | 97(1) $127(1)$ | $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{Os}(2)$ $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{Os}(7)$ | $149(1)$ $70(1)$ |
| $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(21)$ | 89(1) | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(1)$ | 139(1) | $\mathrm{C}(62)-\mathrm{Os}(6)-\mathrm{C}(61)$ | 88(1) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{Os}(1)$ | 160(1) |
| $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | 128.4(9) | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(4)$ | $89(1)$ | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{Os}(2)$ | 114(1) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{Os}(4)$ | 98(1) |
| $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(5)$ $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(21)$ | 162(1) | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(6)$ | 80(1) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{Os}(7)$ | 84(1) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{C}(61)$ | 93(1) |
| $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(21)$ $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 88(1) | $\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(22)$ | 96(1) | $\mathrm{C}(63)-\mathrm{Os}(6)-\mathrm{C}(62)$ | 95(2) | $\mathrm{Os}(6)-\mathrm{Os}(7)-\mathrm{Os}(4)$ | 57.9(1) |
| $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 58.0(1) | $\mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 62.8(1) | $\mathrm{I}-\mathrm{Os}(7)-\mathrm{Os}(4)$ | 87.2(1) | $\mathrm{I}-\mathrm{Os}(7)-\mathrm{Os}(6)$ | 84.4(1) |
| $\mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 61.6(1) | $\mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | $61.1(1)$ | $\mathrm{C}(71)-\mathrm{Os}(7)-\mathrm{Os}(4)$ | 89(1) | $\mathrm{C}(71)-\mathrm{Os}(7)-\mathrm{Os}(6)$ | 95(1) |
| $\mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{Os}(2)$ $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 62.1(1) | $\mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 114.8(1) | $\mathrm{C}(71)-\mathrm{Os}(7)-\mathrm{I}$ | 176(1) | C (72)-Os(7)-Os(4) | 108(1) |
| $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(1)$ $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 127.3(1) | $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 97.8(1) | $\mathrm{C}(72)-\mathrm{Os}(7)-\mathrm{Os}(6)$ | 166(1) | $\mathrm{C}(72)-\mathrm{Os}(7)-\mathrm{I}$ | 93(1) |
| C(31)-Os(3)-Os(1) | 648(1) | $\mathrm{Os}(8)-\mathrm{Os}(3)-\mathrm{Os}(5)$ $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | $151.7(1)$ $107(1)$ | $\mathrm{C}(72)-\mathrm{Os}(7)-\mathrm{C}(71)$ $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{Os}(6)$ | $87(2)$ $105(1)$ | $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{Os}(4)$ $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{I}$ | 163(1) |
| $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 139(1) | $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(5)$ | 87(1) | C $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{Os}(7)-\mathrm{C}(71)$ | $105(1)$ $91(1)$ | $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{I}$ $\mathrm{C}(73)-\mathrm{Os}(7)-\mathrm{C}(72)$ | 93(1) 89(2) |
| $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(8)$ | 80(1) | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(1)$ | 100(1) | $\mathrm{Os}(4)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 57.0(1) | $\mathrm{C}(81)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 110(1) |
| $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | 156(1) | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(4)$ | 120(1) | $\mathrm{C}(81)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 167(1) | $\mathrm{C}(82)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 153(1) |
| $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(5)$ | $100(1)$ | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(8)$ | 104(I) | $\mathrm{C}(82)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 97(1) | $\mathrm{C}(82)-\mathrm{Os}(8)-\mathrm{C}(81)$ | 96(2) |
| $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(31)$ | 86(1) | $\mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 57.6(1) | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 79(1) | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 90.4(9) |
| $\mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 60.4(1) | $\mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 62.6(1) | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{C}(81)$ | 87(1) | $\mathrm{C}(83)-\mathrm{Os}(8)-\mathrm{C}(82)$ | 95(1) |
| $\mathrm{Os}(6)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | $59.7(1)$ | $\mathrm{Os}(6)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 59.4(1) | $\mathrm{C}(84)-\mathrm{Os}(8)-\mathrm{Os}(3)$ | 96.1(8) | $\mathrm{C}(84)-\mathrm{Os}(8)-\mathrm{Os}(4)$ | 88.2(8) |
| $\mathrm{Os}(6)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 111.6(1) | $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(1)$ | 83.7(1) | $\mathrm{C}(84)-\mathrm{Os}(8)-\mathrm{C}(81)$ | 94(1) | $\mathrm{C}(84)-\mathrm{Os}(8)-\mathrm{C}(82)$ | 90(1) |
| $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(2)$ | 119.2(1) | $\mathrm{Os}(7)-\mathrm{Os}(4)-\mathrm{Os}(3)$ | 136.7(1) | $\mathrm{C}(84)-\mathrm{Os}(8)-\mathrm{C}(83)$ | 174(1) | $\mathrm{Os}(7)-\mathrm{I}-\mathrm{Os}(1)$ | 88.7(1) |
| Os-C-O range 164(4)-179(4) |  |  |  |  |  |  |  |

4 and 5 respectively. The carbonyl ligands are terminal with $\mathrm{Os}^{-} \mathrm{C}^{-} \mathrm{O}$ angles in the range $164-179^{\circ}$. The iodine atom links the two 'wing-tips' atoms of a 'butterfly' $\mathrm{Os}_{4}$ unit with bridging bond lengths $\mathrm{Os}(1)-\mathrm{I}=2.753(2)$ and $\mathrm{Os}(7)-\mathrm{I}=2.736(2) \AA$.

The hydrogen ligand in (2) was not found directly in the $X$ ray analysis and it proved unusually difficult to locate by the normal indirect criteria of $\mathrm{M}-\mathrm{M}$ bond lengthening and CO ligand displacement. ${ }^{21}$ For example the longest bond is $\mathrm{Os}(4){ }^{-} \mathrm{Os}(8) 2.904 \AA$ but the $\mathrm{cis}-\mathrm{Os}^{-} \mathrm{Os}^{-} \mathrm{C}^{\mathrm{C}}$ angles adjacent to it are relatively small and occur in the range $77-97^{\circ}$, much smaller than the cis angles for the CO ligands 'pushed back' by the $\mu-\mathrm{H}$ ligand in (1) which occur in the range $101-113^{\circ}$. The Orpen 'potential energy' minimization program ${ }^{22}$ also failed to find a site of suitable energy.

It was decided to attempt location of the H atom by examination of close-packed models of the molecule, derived from the refined atomic co-ordinates, using a program written by Keller ${ }^{23}$ which draws each atom as a sphere of van der Waals radius. In the initial diagrams the core metal atoms, which have very large van der Waals radii, 'swamped' the surface ligand atoms making it difficult to judge if they were in contact. Much more useful drawings were obtained by assigning covalent radii to the underlying core osmium atoms


Figare 4. Computer drawings (ref. 23) of space-filling models of the neutral hydride [ $\mathrm{Os} \mathrm{s}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}$ ] (2) viewed onto the H -bridged face $\mathrm{Os}(1), \mathrm{Os}(3), \mathrm{Os}(4)$


Figure 5. The structural changes observed for reactions of $\left[\mathrm{O} s_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$ (1)
so that the carbonyl ligands can be seen in tangential closepacked contact. Only one gap appears in the surface ligand coverage which can be seen in Figure 4. The 'hole' in the carbonyl ligands is undoubtedly due to the steric requirements of the H atom which is thought to be bonded to the three osmium atoms $\mathrm{Os}(1), \mathrm{Os}(3)$, and $\mathrm{Os}(4)$ visible through the gap in the surface ligand coverage. The area of the metal atoms exposed through the 'hole' in the carbonyl ligands is very asymmetric indicating an unusual asymmetric type of $\mu_{3}-\mathrm{H}$ bridging mode. This explains why the site was not identified using the Orpen program which assumes symmetrical bonding for the hydride ligand. ${ }^{24}$ The $\mathrm{Os}^{-} \mathrm{Os}^{2}$ distances round the $\mu_{3}$ site are unusually short for hydrogen-bridged bonds (mean $2.787 \AA$ ) which partly accounts for the difficulty in locating this H ligand by the usual indirect criteria.

There are several reactions of osmium clusters known which
involve opening of a capping tetrahedral $\mathrm{Os}_{4}$ group to give a bridged 'butterfly' arrangement such as that observed in (2). For example $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]^{2-}$ reacts with iodine to give the monoiodide $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]^{-}$and the neutral di-iodide $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24} \mathrm{I}_{2}\right]$ with sequential opening of tetrahedral capping groups to give this type of bridged 'butterfly' unit. ${ }^{5}$ However in the octaosmium clusters there is no simple relationship between the structure of the iodide (2) and that of the monoanion (1) from which it was formed. Apparently there is a fundamental rearrangement of the core metal geometry and carbonyl distribution when (1) reacts with $\mathrm{I}_{\mathbf{2}}$ to give (2). It is significant that the deprotonation of (1) to give the dianion $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$ (see above) also involves a rearrangement of the metal core from fused tetrahedral to bicapped octahedral. These unusual rearrangement reactions are summarized in Figure 5.


Figure 6. The structure of the dihydride $\left[\mathrm{Os}_{7} \mathrm{H}_{2}(\mathrm{CO})_{20}\right]$ (ref. 31) showing the similarity of the $\mathrm{Os}_{7}$ core geometry to the $\mathrm{Os}_{8}$ geometry in $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ (2)

Apart from reversible opening and closing of tetrahedral capping $\mathrm{Os}_{4}$ units, in the wide range of reactions of the decaosmium carbido-dianion now known, no cluster rearrangement occurs, and the central octahedral $\mathrm{Os}_{10} \mathrm{C}$ unit is always maintained. ${ }^{25-27} \mathrm{We}$ attribute the greater flexibility observed in the $\mathrm{Os}_{8}$ systems compared to the $\mathrm{Os}_{10}$ systems to the fact that no interstitial carbide atom is present in the former to 'bind' the metal core together.
This work shows that various $\mathrm{Os}_{8}$ cluster cages, like their borane counterparts, ${ }^{28}$ appear to have relatively similar energies. Consequently their geometries are unusually sensitive to subtle electronic and steric influences. Indeed, it is interesting to note that, to date, for $\mathbf{M}_{8}$ carbonyl clusters in general, no two species have been reported to contain the same arrangement of metal atoms. ${ }^{29}$ The proton in $\left[\mathrm{Os}_{8} \mathrm{H}\right.$ -$\left.(\mathrm{CO})_{22}\right]^{-}$(1) obviously has some stabilizing effect on the $\mathrm{Os}_{8}$ metal core since although (1) reacts reversibly with iodine, the dianion $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$ decomposes on reaction with $\mathrm{I}_{2}$ and $\mathrm{Os}_{7}$ species are generated. ${ }^{30}$ It may be significant that the only $\mathrm{Os}_{8}$ or $\mathrm{Os}_{7}$ halogen containing clusters that have been observed so far are $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ and $\left[\mathrm{Os}_{7} \mathrm{H}_{2}(\mathrm{CO})_{19} \mathrm{Br}\right]$ (ref. 30) which both contain H ligands.

It is interesting that the metal core in $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ closely resembles that of the unusual structure recently reported for the heptaosmium dihydride $\left[\mathrm{Os}_{7} \mathrm{H}_{2}(\mathrm{CO})_{20}\right]$ (Figure 6). ${ }^{31}$ These two molecules were the first clusters of the iron triad, containing only H or CO ligands, which could not be rationalized by Wade theory as their metal cores are not closo- or nido-triangulated polyhedra nor capped versions of these. Both structures however obey the e.a.n. rule and may be satisfactorily explained by the procedure recently developed by Mingos to extend polyhedral skeletal counting methods to fused polyhedra (see above). However both [ $\mathrm{Os}_{7} \mathrm{H}_{2}(\mathrm{CO})_{20}$ ] and (1) contain a similar $\mathrm{Os}_{6}$ unit to that found in $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ so that their core geometries may more simply be explained by regarding them as derivatives of this molecule with monoand di-osmium substitution respectively. Thus $\left[\mathrm{Os}_{7} \mathrm{H}_{2}(\mathrm{CO})_{20}\right]$ may be regarded as formed by replacement of a CO ligand in the hypothetical dihydride ' $\mathrm{Os}_{6} \mathrm{H}_{2}(\mathrm{CO})_{17}$ ' by an ' $\mathrm{Os}(\mathrm{CO})_{4}$ ' ligand, formally a two-electron donor. Similarly $\left[\mathrm{Os}_{8} \mathrm{H}-\right.$ $\left.(\mathrm{CO})_{22}\right]^{-}$(1) may be formally regarded as derived from the
monoanion ' $\left[\mathrm{Os}_{6} \mathrm{H}(\mathrm{CO})_{17}\right]$ ' by replacing a CO ligand by a bridging ' $\mathrm{Os}_{2}(\mathrm{CO})_{6}$ ' group, also formally a two-electron donor (see below).


## Experimental

Infrared spectra were recorded on a Perkin-Elmer 257 instrument using carbon monoxide gas as calibrant (central position $2143 \mathrm{~cm}^{-1}$ ). N.m.r. spectra were obtained on a Varian XL-100 or a Bruker WH400 spectrometer. Thin-layer chromatography plates were purchased from Merck and consisted of $20 \times 20 \mathrm{~cm}$ glass plates coated with a 0.25 mm layer of silica gel. Silica gel ( $70-230$ mesh) was used for column chromatography. Mass spectra were obtained on an A.E.I. M.S. 12 spectrometer using tris(perfluoroheptyl)-s-triazine as calibrant and were analysed by comparison with the isotopic patterns. The solvents were of A.R. grade and were distilled and deoxygenated before use.

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]+\mathrm{KOH}$ in $\mathrm{Bu}^{i} \mathrm{OH} .-\mathrm{A}$ series of five reactions was investigated; $\left[\mathrm{Os}_{3}(\mathrm{CO})_{1_{2}}\right](80 \mathrm{mg}, 5 \mathrm{~mol}$ equiv.) with KOH ( $2.6 \mathrm{mg}, 3 \mathrm{~mol}$ equiv.) was heated under reflux in $\mathrm{Bu} \mathrm{OH}\left(50 \mathrm{~cm}^{3}\right.$ ) for $1,4,16,48$, and 144 h respectively. The solvent was removed under vacuum and the residue was stirred in acetone with $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}$ until it had dissolved. The mixture was separated by t.l.c. using first acetone (running the compounds until they were $c a .2 \mathrm{~cm}$ up from the base line) then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ( $1: 1$ ) as eluants. For the 48 h reaction this gave five main bands. The band of highest $R_{\mathrm{f}}$ (faint brown) was $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (yield $3.6 \mathrm{mg}, 5 \%$ ). The second was the yellow compound $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{OBu}^{1}\right)(\mathrm{CO})_{10}\right] \quad(20.4$ $\mathrm{mg}, 25 \%)$. The third band was the orange salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]-$ [ $\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}$ ] (main product, yield $48.8 \mathrm{mg}, 45 \%$ ). The fourth was also an orange salt, $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (yield $6.0 \mathrm{mg}, 5 \%$ ) and the band of lowest $R_{\mathrm{f}}$ was the carbido-complex $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]$ (trace amounts).*

Reaction of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]$ in $\mathrm{Bu}^{\mathrm{i} O H}$ under Reflux.- $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]$ was prepared according to the literature method. ${ }^{32}$ This salt ( 30 cm ) was heated in $\mathrm{Bu}^{i} \mathrm{OH}\left(30 \mathrm{~cm}^{3}\right)$ under reflux for 4 h . The solvent was evaporated off and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was separated by t.l.c. as before. This gave four bands. The band of highest $R_{5}$ (faint brown) was $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (trace). The second (yellow) was $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{OBu}^{i}\right)(\mathrm{CO})_{10}\right]$ (yield $4.1 \mathrm{mg}, 20 \%$ ). The third band was the orange salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right]$, the main product (yield $18.9 \mathrm{mg}, 70 \%$ ). The band of lowest $R_{\mathrm{f}}$ was [ $\left.\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (trace amounts).*

Reactions of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right]^{33} \quad\left[\mathrm{~N}\left(\mathrm{PPh}_{3}\right)_{2}\right]-$ $\left[\mathrm{Os}_{6} \mathrm{H}(\mathrm{CO})_{18}\right]{ }^{34}$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})(\mathrm{CO})_{24}\right]{ }^{35}$ in $\mathrm{Bu}^{\prime} \mathrm{OH}$ under Reflux.-Each of the anions in turn ( 15 mg ), prepared

* All yields quoted are after recrystallization of the products. Although i.r. spectra of the reaction mixtures indicated that the hydrido-monoanions $\left[\mathrm{Os}_{6} \mathrm{H}(\mathrm{CO})_{18}\right]^{-}$and $\left[\mathrm{Os}_{10} \mathrm{H}(\mathrm{C})(\mathrm{CO})_{24}\right]^{-}$were formed in the reactions in $\mathrm{Bu}^{i} \mathrm{OH}$ these species usually dissociated to their respective dianions $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]^{2-}$ and $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]^{2-}$ during work-up.

Table 6. Fractional atomic co-ordinates for the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1)

| Atom | $x$ | $y$ | $z$ | Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Os}(1)$ | 0.410 58(4) | 0.321 58(4) | 0.136 49(6) | O(61) | $0.4625(9)$ | 0.2983 (10) | 0.567 1(14) |
| Os(2) | $0.36171(4)$ | 0.123 18(5) | 0.077 56(6) | C(62) | 0.5415 (10) | 0.164 2(11) | 0.347 0(15) |
| Os(3) | 0.250 60(4) | 0.262 68(4) | -0.017 18(6) | O(62) | $0.6068(8)$ | 0.155 3(9) | 0.355 3(12) |
| Os(4) | 0.273 38(4) | 0.224 93(4) | 0.214 13(6) | C(63) | $0.4081(14)$ | 0.065 9(17) | 0.414 8(21) |
| Os(5) | 0.384 08(4) | 0.255 82(5) | -0.113 24(6) | O(63) | 0.392 4(10) | -0.007 1(12) | 0.459 9(15) |
| Os(6) | 0.426 37(4) | $0.18310(5)$ | 0.329 96(6) | C(71) | 0.094 5(12) | 0.426 9(13) | -0.009 5(17) |
| Os(7) | 0.169 31(4) | 0.368 34(5) | 0.119 09(6) | O(71) | 0.049 1(9) | 0.454 9(10) | -0.089 9(14) |
| $\mathrm{Os}(8)$ | $0.11741(4)$ | 0.161 69(5) | 0.062 05(6) | C(72) | 0.251 1(9) | 0.4827 (11) | 0.1410 (14) |
| $\mathrm{P}(1)$ | 0.859 9(3) | 0.218 5(3) | $0.4130(4)$ | O(72) | 0.297 2(8) | 0.554 4(9) | 0.154 8(11) |
| C(11) | 0.524 9(11) | 0.316 6(12) | 0.149 7(15) | C(73) | 0.124 3(11) | 0.416 3(13) | 0.240 3(17) |
| $\mathrm{O}(11)$ | 0.594 4(8) | $0.3119(9)$ | 0.156 2(11) | O(73) | 0.099 4(9) | 0.452 6(11) | 0.3170 (14) |
| C(12) | 0.429 9(10) | $0.4013(12)$ | 0.283 2(15) | C(81) | 0.052 9(11) | $0.1037(13)$ | 0.163 2(17) |
| O(12) | $0.4417(8)$ | 0.457 8(9) | 0.364 8(12) | O(81) | 0.012 5(9) | $0.0667(10)$ | 0.227 2(13) |
| C(13) | 0.408 6(10) | 0.444 2(11) | 0.049 9(14) | C(82) | 0.137 3(11) | 0.033 4(13) | 0.018 0(17) |
| O(13) | 0.412 5(7) | 0.520 7(9) | $0.0117(11)$ | O(82) | 0.145 4(8) | $-0.0435(10)$ | -0.012 1(13) |
| C(21) | 0.316 4(11) | 0.0513 (13) | -0.073 3(17) | C(83) | 0.029 0(12) | 0.165 6(13) | -0.073 6(18) |
| O(21) | 0.289 2(8) | $-0.0003(9)$ | -0.1603(12) | O(83) | -0.024 6(10) | 0.168 3(11) | -0.156 1(15) |
| C(22) | 0.469 4(12) | 0.093 4(14) | 0.088 O(18) | C(1) | 0.843 0(12) | 0.082 4(14) | $0.4260(18)$ |
| $\mathrm{O}(22)$ | 0.5358 8(10) | 0.071 9(12) | $0.0977(15)$ | C(111) | 0.843 8(7) | 0.2463 (8) | 0.2547 7(8) |
| C(23) | $0.3250(12)$ | $0.0100(15)$ | 0.154 7(19) | C(112) | 0.910 2(7) | 0.284 6(8) | $0.2068(8)$ |
| O(23) | 0.3037 (9) | -0.065 9(11) | 0.197 1(14) | C(113) | 0.897 2(7) | $0.3035(8)$ | 0.082 3(8) |
| C(31) | 0.238 2(9) | 0.382 5(11) | -0.104 0(14) | C(114) | $0.8178(7)$ | 0.284 2(8) | $0.0057(8)$ |
| O(31) | 0.2320 (8) | 0.455 1(9) | -0.157 4(11) | C(115) | 0.751 5(7) | 0.2459 9(8) | 0.053 6(8) |
| C(32) | $0.1875(10)$ | 0.1860 (12) | -0.152 8(15) | C(116) | 0.764 5(7) | 0.226 9(8) | 0.1781 (8) |
| $\mathrm{O}(32)$ | $0.1510(8)$ | $0.1349(9)$ | -0.236 0(11) | C(121) | 0.788 8(7) | 0.274 6(8) | 0.476 8(10) |
| C(41) | 0.2310 (12) | 0.117 6(14) | 0.295 2(18) | C(122) | 0.756 6(7) | 0.359 5(8) | 0.424 6(10) |
| $\mathrm{O}(41)$ | $0.2069(9)$ | 0.048 8(10) | 0.347 0(13) | C(123) | 0.699 4(7) | 0.402 6(8) | 0.473 O(10) |
| C(42) | 0.275 6(11) | 0.307 3(12) | 0.347 6(16) | C(124) | 0.674 5(7) | $0.3609(8)$ | 0.573 6(10) |
| $\mathrm{O}(42)$ | $0.2815(8)$ | 0.358 2(9) | 0.433 1(12) | C(125) | 0.706 6(7) | $0.2760(8)$ | 0.625 7(10) |
| C(51) | 0.395 5(11) | 0.371 6(13) | -0.194 6(17) | C(126) | 0.763 8(7) | $0.2329(8)$ | 0.577 4(10) |
| O(51) | 0.4003 (9) | 0.447 6(11) | -0.250 4(13) | C(131) | 0.964 9(7) | 0.2626 (9) | 0.490 4(11) |
| C(52) | 0.488 2(13) | 0.2331 (15) | -0.125 8(19) | C(132) | $0.9835(6)$ | 0.353 1(9) | 0.556 5(11) |
| O(52) | 0.555 2(12) | 0.212 2(13) | -0.129 2(17) | C(133) | $1.0658(6)$ | 0.392 2(9) | $0.6054(11)$ |
| C(53) | 0.336 6(11) | 0.193 3(13) | -0.262 7(17) | C(134) | 1.129 6(6) | $0.3407(9)$ | $0.5882(11)$ |
| O(53) | $0.3080(9)$ | 0.152 5(11) | -0.359 8(14) | C(135) | $1.1110(6)$ | 0.250 2(9) | 0.5221 (11) |
| C(61) | $0.4475(12)$ | $0.2547(15)$ | 0.479 5(19) | C(136) | $1.0287(6)$ | 0.211 1(9) | 0.473 2(11) |

according to literature methods, was heated in $\mathrm{Bu}^{1} \mathrm{OH}\left(15 \mathrm{~cm}^{3}\right)$ under reflux for 48 h . The i.r. spectra of the reaction mixtures were recorded in $\mathrm{Bu}^{\mathrm{i} O H}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and did not show any change in the characteristic frequencies of the starting salts.

Reaction of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ in $\mathrm{Bu}^{i} \mathrm{OH}$ under Reflux; Synthesis of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}(1)$.- $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right](200 \mathrm{mg})$ was heated in $\mathrm{Bu}{ }^{1} \mathrm{OH}\left(40 \mathrm{~cm}^{3}\right)$ under reflux for 53 h , after which time the i.r. spectrum showed no $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right.$ ] remaining. The solvent was removed under vacuum and the residues were taken up in acetone ( $10 \mathrm{~cm}^{3}$ ). This gave a dark red solution plus a dark solid. Following the addition of $\left[\mathrm{PMePh}_{3}\right] \mathrm{Br}$ in MeOH (32 $\mathrm{mg}, 10 \mathrm{~cm}^{3}$ ), the mixture was left stirring under $\mathrm{N}_{2}$ for 1 h , then the solvents were evaporated off under vacuum. On addition of a minimum of acetone $\left(5 \mathrm{~cm}^{3}\right),\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right]$ separated as a white powder which was filtered off. The acetone mixture was separated by column chromatography using acetone-hexane ( $1: 1$ ) as eluant to give four main fractions. The first (faint yellow) was $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right]$ (total yield $32.6 \mathrm{mg}, 21 \%$. The second (dark red, main product) was $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$; this was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Pr}^{1} \mathrm{OH}$ by slow evaporation techniques (total yield 48.1 mg , $31 \%$ ). The third fraction was $\left[\mathrm{PMePh}_{3}\right]_{2}\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ (yield $23.9 \mathrm{mg}, 10 \%$ ). Finally the fourth fraction was $\left[\mathrm{PMePh}_{3}\right]_{2}-$ $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]$ (trace).

Protonation of $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$. - Addition of one drop of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ to $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os} \mathrm{s}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$ (10 mg ) in $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ resulted in the formation of $\left[\mathrm{Os}_{8} \mathrm{H}_{2}-\right.$
$\left.(\mathrm{CO})_{22}\right]$ (3) in quantitative yield which precipitated in the form of a brown powder. This was characterized by i.r. and mass spectroscopy.

Deprotonation of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$(1).-Addition of an excess of KOH (one pellet) in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$ to a methanolic solution of $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]\left(20 \mathrm{mg}\right.$ in $\left.4 \mathrm{~cm}^{3}\right)$ led to the formation of the dianion after 1 h at room temperature. The solvent was removed under vacuum and water $\left(6 \mathrm{~cm}^{3}\right)$ was added to remove excess KOH . The suspension was filtered through silica; the dark brown solid was first washed with water ( 3 times) then removed from the silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(8 \mathrm{~cm}^{3}\right)$, and dried over $\mathrm{MgSO}_{4}$. After filtration, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reduced in volume to $3 \mathrm{~cm}^{3}$ and $\left[\mathrm{PMePh}_{3}\right] \mathrm{Br}$ in MeOH ( 20 mg in $2 \mathrm{~cm}^{3}$ ) was added. Slow evaporation at room temperature gave crystals of $\left[\mathrm{PMePh}_{3}\right]_{2}\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]$ which were washed first with cold MeOH then with pentane (yield $14 \mathrm{mg}, 62 \%$ ).

Deprotonation of $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right](10 \mathrm{mg})$ in acetone ( $4 \mathrm{~cm}^{3}$ ) is also achieved by addition of a 10 -fold excess of $\left[\mathrm{NBu}_{4}\right] \mathrm{I},\left[\mathrm{PMePh}_{3}\right] \mathrm{Br},\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}$, or proton sponge $[1,8-$ bis(dimethylamino)naphthalene] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $1 \mathrm{~cm}^{3}$ ). The reaction is complete after 24 h .

Reaction of $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right]$ or $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$ in $\mathrm{Bu}^{\prime} \mathrm{OH}$ under Reflux.-Both compounds ( 15 mg ) were heated in turn in $\mathrm{Bu} \mathrm{u}^{1} \mathrm{OH}\left(10 \mathrm{~cm}^{3}\right)$ under reflux for 48 h . No reaction occurred according to the i.r. spectra and spot t.l.c. of the solutions [using acetone-hexane (1:1) as eluant].

Table 7. Fractional atomic co-ordinates for $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{21}\right]$ (2)

| Atom | $x$ | $y$ | $z$ | Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Os(1) | 0.259 36(8) | $0.33183(10)$ | 0.408 09(5) | C(51) | 0.153 7(30) | 0.142 1(42) | $0.5600(19)$ |
| Os(2) | 0.114 54(7) | 0.167 19(11) | $0.40772(15)$ | O(51) | 0.119 4(19) | 0.078 0(27) | 0.589 6(12) |
| Os(3) | 0.303 53(7) | 0.094 34(10) | $0.44101(4)$ | C(52) | 0.315 5(23) | 0.254 9(33) | $0.5611(15)$ |
| Os(4) | 0.257 32(7) | $0.13114(10)$ | 0.334 06(4) | O(52) | $0.3797(19)$ | 0.272 0(27) | 0.5920 (12) |
| Os(5) | 0.214 98(9) | 0.239 23(12) | $0.50856(5)$ | C(53) | 0.137 6(27) | 0.370 9(38) | $0.5317(17)$ |
| Os(6) | 0.128 74(8) | 0.318 22(12) | 0.317 35(5) | O(53) | $0.0915(23)$ | 0.447 6(33) | 0.5457 (14) |
| Os(7) | 0.289 10(8) | $0.31560(12)$ | $0.25471(5)$ | C(61) | $0.0183(21)$ | 0.378 8(29) | 0.344 2(13) |
| Os(8) | 0.310 74(8) | -0.106 74(11) | 0.376 07(5) | O(61) | -0.0509(19) | 0.421 2(26) | $0.3561(12)$ |
| I | 0.3701 (1) | 0.450 4(2) | $0.3387(1)$ | C(62) | $0.1500(24)$ | 0.473 6(34) | 0.289 9(15) |
| C(11) | 0.371 7(23) | 0.380 4(32) | 0.459 4(14) | $\mathrm{O}(62)$ | $0.1554(17)$ | 0.582 9(24) | 0.284 3(11) |
| $\mathrm{O}(11)$ | 0.4231 (17) | 0.419 4(23) | 0.4860 (10) | C(63) | 0.064 6(24) | 0.2591 (35) | $0.2517(16)$ |
| C(12) | 0.178 8(24) | 0.466 9(34) | 0.418 8(15) | O(63) | 0.022 2(17) | $0.2306(24)$ | 0.214 8(11) |
| O(12) | 0.1391 (19) | 0.553 4(27) | $0.4285(12)$ | C(71) | $0.2362(21)$ | $0.2166(28)$ | 0.2017 (13) |
| C(21) | $0.1003(21)$ | 0.033 7(29) | 0.453 7(13) | O(71) | $0.1987(20)$ | 0.167 0(27) | 0.167 3(12) |
| O(21) | 0.082 1(13) | -0.052 7(19) | 0.477 4(8) | C(72) | 0.3951 (30) | 0.2851 (40) | 0.228 1(19) |
| C(22) | 0.024 6(22) | 0.251 9(31) | 0.444 4(14) | O(72) | 0.476 4(19) | $0.2711(26)$ | 0.212 4(12) |
| O(22) | -0.035 O(19) | 0.287 2(26) | 0.465 2(12) | C(73) | 0.273 8(23) | $0.4512(34)$ | 0.207 8(15) |
| C(23) | 0.029 2(21) | 0.092 3(28) | 0.357 4(13) | O(73) | 0.265 3(19) | 0.539 0(27) | 0.183 8(12) |
| O(23) | -0.028 1(16) | 0.049 6(23) | 0.326 5(10) | C(81) | 0.348 5(23) | -0.244 1(34) | 0.419 7(15) |
| C(31) | 0.295 6(23) | -0.026 4(32) | 0.492 9(14) | $\mathrm{O}(81)$ | 0.362 8(18) | -0.323 5(25) | 0.446 9(11) |
| O(31) | 0.279 6(17) | -0.090 9(24) | 0.529 7(11) | C(82) | $0.3165(25)$ | -0.183 7(35) | 0.308 2(16) |
| C(32) | 0.431 2(22) | 0.115 6(29) | 0.469 9(13) | O(82) | 0.3190 (16) | -0.246 1(23) | 0.270 5(11) |
| O(32) | $0.5013(14)$ | $0.1365(19)$ | 0.4870 (8) | C(83) | 0.437 7(21) | -0.059 0(29) | 0.382 6(13) |
| C(41) | 0.183 4(20) | 0.035 5(28) | 0.284 8(13) | O(83) | 0.517 6(15) | -0.034 9(20) | 0.386 9(9) |
| $\mathrm{O}(41)$ | 0.134 2(17) | -0.019 3(23) | 0.255 3(10) | C(84) | 0.177 1(19) | -0.146 8(25) | 0.375 5(12) |
| C(42) | 0.359 5(21) | 0.0961 (28) | 0.299 2(13) | O(84) | 0.1023 (17) | -0.1753(23) | 0.374 7(10) |
| $\mathrm{O}(42)$ | 0.425 4(18) | 0.068 8(24) | 0.279 5(11) | $\mathrm{O}(1)$ | 0.583 6(17) | 0.2401 (24) | $0.3601(11)$ |

Reaction of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right]$ under Reflux in $n$-Octane or in $\mathrm{Bu}^{\mathrm{i} O H}$ under a CO Atmosphere.-No reaction was observed when $\left[\mathrm{Os}_{6}(\mathrm{CO})_{18}\right.$ ] ( 20 mg ) was heated under reflux in n octane ( $15 \mathrm{~cm}^{3}$; b.p. $125.6^{\circ} \mathrm{C}$ ) for 48 h nor in $\mathrm{Bu} \mathrm{OH}^{\prime} \mathrm{OH}$ ( 15 $\mathrm{cm}^{3}$; b.p. $108{ }^{\circ} \mathrm{C}$ ) under reflux for the same time with CO passing through the solution.

Reaction of $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]$ with $\mathrm{I}_{2}$.-Slow addition of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing two equivalents of $\mathrm{I}_{2}$ to $\left[\mathrm{PMePh}_{3}\right]\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right](15 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ gave immediately the brown species $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ (2). This was purified by t.l.c. using hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ as eluant, and crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by slow evaporation at $0{ }^{\circ} \mathrm{C}$ (yield $12.3 \mathrm{mg}, 86 \%$ ).

Reaction of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ (2) with [ $\left.\mathrm{NBu}_{4}\right]$ II.-Addition of [ $\mathrm{NBu}_{4}$ ]I ( $3 \mathrm{mg}, 2 \mathrm{~mol}$ equiv.) to a solution of $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22} \mathrm{I}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 mg in $5 \mathrm{~cm}^{3}$ ) led to total reformation of $\left[\mathrm{Os}_{8} \mathrm{H}-\right.$ $\left.(\mathrm{CO})_{22}\right]^{-}$(characterized by i.r.) after 2 h at room temperature.

Crystal Data for (1), $\left[\mathrm{PMePh}_{3}\right]^{+}$Salt. $-\mathrm{C}_{41} \mathrm{H}_{19} \mathrm{O}_{22} \mathrm{Os}_{8} \mathrm{P}$, $M=2416.2$, triclinic, space group $P \overline{1}, a=16.775(3), b=$ 13.509(2), $c=11.267(2) ~ \AA, \alpha=89.88(1), \quad \beta=103.97(1)$, $\gamma=96.99(1)^{\circ}, U=2458.3 \AA^{3}, F(000)=2128, Z=2, D_{\mathrm{c}}=$ $3.26 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo- $K_{\alpha}$ radiation, $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $198.9 \mathrm{~cm}^{-1}$. The space group was assumed and confirmed by satisfactory refinement. The crystal selected for data collection had dimensions $0.20 \times 0.15 \times 0.21 \mathrm{~mm}$. Data were collected in the $\theta$ range $3-25^{\circ}$, with scan width $0.8^{\circ} .482$ Azimuthal scan data were used in the absorption correction and relative transmission factors varied from 1.00 to 0.54 . Equivalent reflections were averaged to give 5615 absorptioncorrected reflections with $I / \sigma(I) \geqslant \mathbf{3 . 0}$.

Crystal Data for (2) (as a Monohydrate). $-\mathrm{C}_{22} \mathrm{H}_{3} \mathrm{IO}_{23} \mathrm{Os}_{8}$, $M=2$ 283.7, monoclinic, space group $P 2_{1} / c, a=14.386(2)$, $b-11.037(1), c=24.629(3) \AA, \beta=94.30(2)^{\circ}, U-3899.5$
$\AA^{3}, F(000)=3920, Z=4, D_{c}=3.89 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo- $K_{\alpha}$ radiation, $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=257.7 \mathrm{~cm}^{-1}$. The space group was assigned from systematic absences in the data $h 0 l(l=2 n+1)$ and $0 k 0(k=2 n+1)$. The crystal selected for data collection had dimensions $0.35 \times 0.20 \times 0.10 \mathrm{~mm}$. Data were collected in the $\theta$ range $3-25^{\circ}$, with scan width $0.90^{\circ} .406$ Azimuthal scan data were used in the absorption correction and relative transmission factors varied from 1.00 to 0.42. Equivalent reflections were averaged to give 4644 reflections with $I / \sigma(I) \geqslant 3.0$.

The method of data collection, data processing, and absorption correction used for the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt of (1) and for (2) have been described previously. ${ }^{36}$

Structure Solution and Refinement. ${ }^{37}$--The position of three osmium atoms for the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt of (1) (defining a triangle) were found from a Patterson synthesis; the remaining five osmium atoms were found from subsequent Fourier syntheses. The non-hydrogen atoms were located from difference-Fourier syntheses, establishing the formulation of (1) as $\left[\mathrm{Os}_{8} \mathrm{H}(\mathrm{CO})_{22}\right]^{-}$. Blocked full-matrix refinement of the atomic positional and thermal parameters converged at a final $R=0.0359$ and $R^{\prime}$ of 0.0366 . The phenyl groups were treated as rigid hexagons $\left[d\left(\mathrm{C}^{-} \mathrm{C}\right)=1.395, d\left(\mathrm{C}^{-} \mathrm{H}\right)=1.08 \AA\right]$. Anisotropic thermal parameters were assigned to the Os and $\mathbf{P}$ atoms, and a common thermal parameter [refined value $0.108(20) \AA^{2}$ ] to the H atoms in the final cycles of refinement. Final difference-Fourier syntheses showed a few residual peaks of $c a .1 \mathrm{e} \AA^{-3}$ in the region of the osmium atoms.

For (2) four osmium atoms (defining a tetrahedron) were located from a Patterson map and the remaining osmium and other non-hydrogen atoms were found in subsequent differ-ence-Fourier syntheses. With all atoms included, a differenceFourier synthesis showed several residual peaks of $c a$. 2-3 e $\AA^{-3}$ in the vicinity of the Os atoms. One higher peak of $c a .6 \mathrm{e}$ $\AA^{-3}$ was located between the I atom ( $3.85 \AA$ ) and a carbonyl oxygen $\mathrm{O}(83)(3.26 \AA)$. This was attributed to the oxygen atom
of a water molecule and as such refined satisfactorily. No independent evidence of the presence of water of crystallization was obtained from the i.r. spectrum. Blocked fullmatrix refinement, with anisotropic thermal parameters assigned to the osmium and iodine atoms, converged to a final $R$ of 0.0569 and $R^{\prime}$ of 0.0570 . A final difference-Fourier synthesis showed residual peaks of $c a .2 \mathrm{e} \AA^{-3}$ in the region of the osmium atoms.

The final atomic co-ordinates for the $\left[\mathrm{PMePh}_{3}\right]^{+}$salt of (1), and for (2), are given in Tables 6 and 7 respectively.

## Acknowledgements

We thank the S.E.R.C. (to D. B.), I.C.I. (to W. J. H. N.), and C.N.Pq. (Brazil) (to M. D. V.) for financial support, and Drs. E. C. Constable and M. J. Taylor for running the n.m.r. spectra.

## References

1 C. R. Eady, B. F. G. Johnson, and J. Lewis, J. Chem. Soc., Dalton Trans., 1975, 2606; P. F. Jackson, B. F. G. Johnson, J. Lewis, W. J. H. Nelson, and M. McPartlin, ibid., 1982, 2099.

2 S. Martinengo, G. Ciani, and A. Sironi, J. Am. Chem. Soc., 1980, 102, 7564.
3 Preliminary report, D. Braga, K. Henrick, B. F. G. Johnson, J. Lewis, M. McPartlin, W. J. H. Nelson, and M. D. Vargas, J. Chem. Soc., Chem. Commun., 1982, 419.

4 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, M. D. Vargas, D. Braga, and M. McPartlin, J. Organomet. Chem., 1983, 249, C21.
5 D. H. Farrar, P. F. Jackson, B. F. G. Johnson, J. Lewis, W. J. H. Nelson, M. D. Vargas, and M. McPartlin, J. Chem. Soc., Chem. Commun., 1981, 1009.
6 P. A. Dawson, personal communication.
7 P. F. Jackson, B. F. G. Johnson, J. Lewis, and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1980, 60.

8 K. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 1; D. M. P. Mingos, Nature Phys. Sci., 1972, 236, 99.
9 R. Mason, K. M. Thomas, and D. M. P. Mingos, J. Am. Chem. Soc., 1973, 95, 3802.
10 Z. Dawoodi, M. J. Mays, and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1981, 801.
11 M. McPartlin, C. R. Eady, B. F. G. Johnson, and J. Lewis, J. Chem. Soc., Chem. Commun., 1976, 883.

12 J. J. Guy and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1978, 34, 1725.
13 G. R. John, B. F. G. Johnson, J. Lewis, W. J. H. Nelson, and M. McPartlin, J. Organomet. Chem., 1979, 171, C14.

14 D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1983, 706.
15 E. C. Constable, B. F. G. Johnson, J. Lewis, G. N. Pain, and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1982, 754.

16 D. J. Cox, G. R. John, B. F. G. Johnson, and J. Lewis, J. Organomet. Chem., 1980, 186, C69.
17 W. J. H. Nelson and M. D. Vargas, unpublished work.
18 J. A. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3722.
19 P. Chini, Gazz. Chim. Ital., 1979, 109, 225.
20 C. T. Hayward and J. R. Shapley, Inorg. Chem., 1982, 21, 3816.
21 M. R. Churchill and J. Wormald, J. Am. Chem. Soc., 1971, 93, 5670; M. McPartlin, C. R. Eady, B. F. G. Johnson, and J. Lewis, J. Chem. Soc., Chem. Commun., 1976, 883.

22 A. G. Orpen, Hydrex Program, Cambridge University, 1980.
23 E. Keller, Schakal Program, University of Freiburg, 1978.
24 A. G. Orpen, J. Chem. Soc., Dalton Trans., 1980, 2509.
25 D. Braga, K. Henrick, B. F. G. Johnson, J. Lewis, M. McPartlin, W. J. H. Nelson, and J. Puga, J. Chem. Soc., Chem. Commun., 1982, 1083.
26 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, M. D. Vargas, D. Braga, and M. McPartlin, J. Organomet. Chem., 1983, 246, C69.
27 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, J. N. Nicholls, and M. D. Vargas, J. Organomet. Chem., 1983, 249, 255.

28 D. A. Kleier and W. N. Lipscomb, Inorg. Chem., 1979, 18, 1312 ; J. Evans, J. Chem. Soc., Dalton Trans., 1978, 18; J. R. Pipal and R. N. Grimes, Inorg. Chem., 1979, 18, 257.

29 G. Ciani, G. D'Alfonso, M. Freni, P. Romiti, and A. Sironi, J. Chem. Soc., Chem. Commun., 1982, 705; V. G. Albano, P. Chini, G. Ciani, S. Martinengo, and M. Sansoni, J. Chem. Soc., Dalton Trans., 1978, 463; L. D. Lower and L. F. Dahl, J. Am. Chem. Soc., 1976, 98, 5046; V. G. Albano, M. Sansoni, P. Chini, S. Martinengo, and D. Strumolo, J. Chem. Soc., Dalton Trans., 1975, 305; F. Demartin, M. Manassero, M. Sansoni, L. Garlaschelli, C. Raimondi, S. Martinengo, and F. Canziani, J. Chem. Soc., Chem. Commun., 1981, 528.

30 M. D. Vargas, unpublished work.
31 E. J. Ditzel, H. D. Holden, B. F. G. Johnson, J. Lewis, A. Saunders, and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1982, 1373.
32 C. R. Eady, B. F. G. Johnson, J. Lewis, and M. C. Malatesta, J. Chem. Soc., Dalton Trans., 1978, 1358.

33 B. F. G. Johnson, J. Lewis, P. R. Raithby, G. M. Sheldrick, K. Wong, and M. McPartlin, J. Chem. Soc., Dalton Trans., 1978, 673.

34 C. R. Eady, B. F. G. Johnson, and J. Lewis, J. Chem. Soc., Chem. Commun., 1976, 302.
35 P. F. Jackson, B. F. G. Johnson, J. Lewis, M. McPartlin, and W. J. H. Nelson, J. Chem. Soc., Chem. Commun., 1982, 49.

36 M. K. Cooper, P. A. Duckworth, K. Henrick, and M. McPartlin, J. Chem. Soc., Dalton Trans., 1981, 2357.

37 G. M. Sheldrick, SHELX 76, Crystal Structure Solving Package, University of Cambridge, 1976.

Received 7th September 1983; Paper 3/1567


[^0]:    * The $X$-ray data for the $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salt of (1) are given in the preliminary account of this work, ${ }^{3}$ and the atomic co-ordinates are available from the Cambridge Data Centre.

